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Introduction to Next-Generation 
Sequencing Data and Analysis
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General DNA sequencing
Sanger

1970’s – today
most reliable, but expensive

Next-generation [high-throughput] (NGS):
Genome Sequencer FLC (GS FLX, by 454 Sequencing)
Illumina’s Solexa Genome Analyzer
Applied Biosystems SOLiD platform
others …
Key difference from microarrays: no probes on arrays, 
but sequence (and identify) all sequences present
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Common features of NGS 
technologies (1)

fragment prepared genomic material
biological system’s RNA molecules 

RNA-Seq
DNA or RNA interaction regions 

ChIP-Seq, HITS-CLIP
others …

sequence these fragments (at least partially)
produces HUGE data files (~10 million 
fragments sequenced)
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Common features of NGS 
technologies (2)

align sequenced fragments with reference sequence
usually, a known target genome (gigo…)
alignment tools: ELAND, MAQ, SOAP, Bowtie, others
often done with command-line tools
still a major computational challenge

count number of fragments mapping to certain regions
usually, genes
these read counts linearly approximate target transcript 
abundance
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Example – 3 treated vs. 4 untreated;
read counts for 14,470 genes

Published 2010 (Brooks et al., Genome Research)
Drosophila melanogaster 
3 samples “treated” by knock-down of “pasilla” gene 
(thought to be involved in regulation of splicing)

T1   T2   T3   U1   U2   U3   U4
FBgn0000003    0    0    1    0    0    0    0
FBgn0000008   78   46   43   47   89   53   27
FBgn0000014    2    0    0    0    0    1    0
FBgn0000015    1    0    1    0    1    1    2
FBgn0000017 3187 1672 1859 2445 4615 2063 1711
FBgn0000018  369  150  176  288  383  135  174
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library(pasilla); data(pasillaGenes)
eset <- counts(pasillaGenes)
colnames(eset) <- c('T1','T2','T3','U1','U2','U3','U4')
head(eset)
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Here, RNA-Seq:
similar biological objective to microarrays

recall central dogma: DNA mRNA protein 
action

quantify [mRNA] transcript abundance
Isolate RNA from cells, fragment at random positions, 
and copy into cDNA
Attach adapters to ends of cDNA fragments, and bind 
to flow cell (Illumina has glass slide with 8 such lanes 
– so can process 8 samples on one slide)
Amplify cDNA fragments in certain size range (e.g., 
200-300 bases) – using PCR clusters of same 
fragment
Sequence – base-by-base for all clusters in parallel



9 (originally illumina.com download; see 
http://res.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf)

10 (originally illumina.com download)

11 (orginally illumina.com download) 12 (orginally illumina.com download)
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Cartoons
Imaging the sequence (“cutting edge imaging technology”)
(1:40-2:20 of http://www.youtube.com/watch?v=d2AxXv_6UTQ)

See also “Illumina sequencing” 
http://www.youtube.com/watch?v=l99aKKHcxC4 14

Then align and map …
For sequence at each cluster, compare to [align 
with] reference genome; file format:

millions of clusters per lane
approx. 1 GB file size per lane

For regions of interest in reference genome 
(genes, here), count number of clusters mapping 
there

requires well-studied and well-documented 
genome

What would limma/eBayes results 
look like?
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# (Defined eset object on slide 7; now define conditions)
conds <- c("T","T","T","U", "U", "U", "U")  
# 3 treated, 4 untreated

# try analyzing as in limma/eBayes
#  (slides 8 and 13 of Notes 3.4)
library(limma)
trt <- as.factor(conds)
design <- model.matrix(~0+trt)
colnames(design) <- c('T','U')
fit <- lmFit(eset, design)
contrast.trt <- makeContrasts(T-U, levels=design)
fit.trt <- contrasts.fit(fit, contrast.trt)
final.fit.trt <- eBayes(fit.trt)

# Warning message:
# Zero sample variances detected, have been offset 

top.trt <- topTableF(final.fit.trt, n=nrow(eset))

sum(top.trt$adj.P.Val<.05) # 0 sig. genes

hist(top.trt$P.Value, main='limma/eBayes', xlab='raw P-value')

16 (logged counts yield similar result)



17

But wait …

limma/eBayes implicitly assumes continuous data for 
each gene k:

Recall matrix representation (slide 5 of Notes 3.4)
Y = X β + ε ,         εij iid N(0,σ2)

Recall contrast and its moderated test statistic
(slides 11 and 12 of Notes 3.4)

But these data are counts – discrete 
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Now consider Poisson regression 
(data as counts)

As with previous models, on a per-gene basis:
Let Ni = # of total fragments counted in sample i
Let pi = P{ fragment matches to gene in sample i }

Observed # of total reads for gene in sample i :
Ri ~ Poisson(Nipi)
E[Ri] = Var[Ri] = Nipi

Let Ti = indicator of trt. status (0/1) for sample i
Assume log(pi) = β0 + β1 Ti

Test for DE using H0: β1 = 0
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Poisson Regression

E[Ri] = Nipi = Ni exp(β0 + β1 Ti)
log(E[Ri]) = log Ni +  β0 + β1 Ti

Do this for one gene in R (here, gene 2):

estimate β’s using iterative MLE procedure

not interesting, but important 
– call this the “offset”;
often considered the “exposure” for sample i

trt <- c(1,1,1,0,0,0,0)
R <- eset[2,]
lExposure <- log(colSums(eset))
a1 <- glm(R ~ trt, family=poisson, offset=lExposure)
summary(a1)

20

Call:
glm(formula = R ~ trt, family = poisson, offset = lExposure)

Deviance Residuals: 
T1       T2       T3       U1       U2       U3       U4  

0.3690   0.4516  -0.9047  -0.7217   0.5862   2.3048  -2.5286  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -11.85250    0.06804 -174.19   <2e-16 ***
trt 0.05875    0.10304    0.57    0.569    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 14.053  on 6  degrees of freedom
Residual deviance: 13.729  on 5  degrees of freedom
AIC: 58.17

Number of Fisher Scoring iterations: 4
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Do this for all genes …

jackpot?
22

Possible (frequent)  problem – overdispersion

Recall [implicit] assumption for Poisson dist’n:
E[Ri] = Var[Ri] = Nipi

It can sometimes happen that Var[Ri] > E[Ri]
common check: add a scale (or dispersion) 
parameter σ
Var[Ri] = σ E[Ri]
Estimate σ2 as χ2/df
Deviance χ2 a goodness of fit statistic:

i i

i
iD R

RR ˆlog22
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# Poisson regression for all genes, checking for overdispersion
Poisson.p <- scale <- rep(NA,nrow(eset))
lExposure <- log(colSums(eset))
trt <- c(1,1,1,0,0,0,0)

## this next part takes about 1.5 minutes
print(date()); for(i in 1:nrow(eset))
{  count <- eset[i,]

a1 <- glm(count ~ trt, family=poisson, offset=lExposure)
Poisson.p[i] <- summary(a1)$coeff[2,4]
scale[i] <- sqrt(a1$deviance/a1$df.resid)

}; print(date())

par(mfrow=c(2,2))
hist(Poisson.p, main='Poisson', xlab='raw P-value')
boxplot(scale, main='Poisson', xlab='scale estimate');
abline(h=1,lty=2)

mean(scale > 1)
#  0.640152
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Can use alternative distribution:
edgeR package does this:

For each gene: Ri ~ NegativeBinomial
(number of indep. Bernoulli trials to achieve a fixed number 
of successes)

Let μi = E[Ri] , and vi = Var[Ri]
But low sample sizes prevent reliable estimation of μi and vi

Assume vi = μi + α μi
2

estimate α by pooling information across genes
then only one parameter must be estimated for each gene

But – DESeq package improves on this 
(see next set of slides – Notes 6.4)
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Major Advantages of NGS

No artifacts of cross-hybridization (noise, background, 
etc.)

Better estimation of low-abundance transcripts

“Dynamic Range”
no technical limitation as with intensity observations
Aside: this would be violated by quantile normalization 
[in tails of distributions] – so instead consider RPKM 
normalization (reads per kilobase of exon model per 
million)

Cost expected to improve in coming years
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Remaining issues with NGS
Practical problem with sample preparation – possible low 
reads for A/T-rich regions

High error rates – due to sample preparation / 
amplification and dependence of read quality on base 
position

Image quality (bubbles, etc.)

File size [huge] – expected to soon be cheaper to re-run 
experiment than to store data

but what about sample availability?
value in older files (as with .CEL for microarrays)

Sequence mapping – methods and implementations

27

Interesting statistical questions
Fully accounting for all sources of variation

slide, lane, etc.
Error propogation

counts estimate transcript abundance
alignment

Accounting for gene length
offset?

Effective statistical computing
sifting through massive alignment files

A Rough Timeline of Arrivals
(1995+) Microarrays

require probes fixed in advance – only set up to detect those

(2005+) Next-Generation Sequencing (NGS)
typically involves amplification of genomic material (PCR)

(2010+) Third-Generation Sequencing
“next-next-generation” – Pac Bio, Ion Torrent
no amplification needed – can sequence single molecule
longer reads possible; still (as of 2013) showing high errors

(2012+) Nanopore-Based Sequencing
Oxford Nanopore, Genia, others
bases identified as whole molecule slips through nanoscale
hole (like threading a needle); coupled with disposable 
cartridges; still (as of 2013) under development

(?+) more …28

D
iffer in how

 sequencing done; subsequent post-
alignm

ent statistical analysis basically sam
e
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Conclusions

NGS a powerful tool for transcriptomics
Computational challenges

storage (sequencing and alignment files)
Most meaningful to use count-data models

Up next: a negative binomial model with 
DESeq

Issues (technological and statistical) remain


